How Smooth Is the Smoothest Function in a Given Refinable Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Smooth Is the Smoothest Function in a Given Refinable Space

is a subspace of V. The role of refinable PSI spaces in the construction of wavelets from multiresolution analysis, as well as in the study of subdivision algorithms is wellknown, well-understood, and well-documented (cf. e.g., [6, 4]). The two properties of a refinable PSI space that we compare here are: (s) the smoothness of the "smoothest" nonzero function g ∈ V. (ao) the approximation order...

متن کامل

How smooth is the smoothest function in a given re nable space ?

A closed subspace V of L 2 := L 2 (IR d) is called PSI (principal shift-invariant) if it is the smallest space that contains all the shifts (i.e., integer translates) of some function 2 L 2. Ideally, each function f in such PSI V can be written uniquely as a convergent series f = X 2ZZ d c()(?) with kck`2 kfk L 2. In this case one says that the shifts of form a Riesz basis or that they are L 2-...

متن کامل

Refinable Subspaces of a Refinable Space

Local refinable finitely generated shift-invariant spaces play a significant role in many areas of approximation theory and geometric design. In this paper we present a new approach to the construction of such spaces. We begin with a refinable function ψ : R → Rm which is supported on [0, 1]. We are interested in spaces generated by a function φ : R → Rn built from the shifts of ψ.

متن کامل

How Does Truncation of the Mask Affect a Refinable Function?

If the mask of a refinable function has infinitely many coefficients, or if the coefficients are irrational, then it is often replaced by a finite mask with coefficients with terminating decimal expansions when it comes to applications. This note studies how such truncation affects the refinable function.

متن کامل

Piecewise-smooth Refinable Functions

Univariate piecewise-smooth refinable functions (i.e., compactly supported solutions of the equation φ( 2 ) = ∑N k=0 ckφ(x−k)) are classified completely. Characterization of the structure of refinable splines leads to a simple convergence criterion for the subdivision schemes corresponding to such splines, and to explicit computation of the rate of convergence. This makes it possible to prove a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 1996

ISSN: 1063-5203

DOI: 10.1006/acha.1996.0008